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ABSTRACT

We study online meta-learners for real-time bid prediction
that predict by selecting a single best predictor among sev-
eral subordinate prediction algorithms, here called “experts”.
These predictors belong to the family of context-dependent
past performance estimators that make a prediction only
when the instance to be predicted falls within their areas
of expertise. Within the advertising ecosystem, it is very
common for the contextual information to be incomplete,
hence, it is natural for some of the experts to abstain from
making predictions on some of the instances. Experts’ areas
of expertise can overlap, which makes their predictions less
suitable for merging; as such, they lend themselves better to
the problem of best expert selection. In addition, their per-
formance varies over time, which gives the expert selection
problem a non-stochastic, adversarial flavor. In this paper
we propose to use probability sampling (via Thompson Sam-
pling) as a meta-learning algorithm that samples from the
pool of experts for the purpose of bid prediction. We show
performance results from the comparison of our approach to
multiple state-of-the-art algorithms using exploration scav-
enging on a log file of over 300 million ad impressions, as well
as comparison to a baseline rule-based model using produc-
tion traffic from a leading DSP platform.
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1. INTRODUCTION

With the increasing adoption of real time bidding (RTB),
internet advertising models are undergoing a revolution. RTB
enables marketers to participate in real time auctions for ad
placement that occur seconds before a website loads. This
functionality has helped to make advertising much more pre-
cise and personalized and enables advertisers to reach their
target audiences. Programmatic trading, the technology be-
hind the RTB, offers an immense potential for cost effective
advertising. However, in order to realize this potential, ad-
vertisers need to intelligently adjust their bids as the mar-
ket conditions fluctuate and real time feedback is received
regarding the efficacy of a campaign. Demand-Side Plat-
forms (DSPs) offer real time bid prediction [25, 18] to help
advertisers find the optimal bid value in milliseconds. The
goal of real time bid prediction is to maximize campaign
performance goals under a budget constraint. Typical per-
formance goals are minimizing cost-per-click (CPC) or cost-
per-action (CPA), as well as maximizing click-through-rate
(CTR) or action-rate (AR).

Predicting the performance of an ad is a challenging prob-
lem for many reasons. First of all, each decision to buy an
impression and at what price needs to be made in just few
milliseconds. Top DPSs typically receive a few million bid
requests per second coming from users that are exploring the
web all around the globe. Most of the time, the necessary
information to make the optimal bidding decision is miss-
ing or delayed. For example, user data is based on cookies
rather than real users. In addition, a significant number of
visitors are likely to be entirely new with no historical con-
sumption record whatsoever. In many web-based scenarios,
the content universe undergoes frequent changes, with con-
tent popularity changing over time as well. The situation is
similar with respect to advertisers’ content (ads and cam-
paigns); this is known as the cold-start problem.

The above problem is known as a feature-based exploration-
exploitation problem [21] and to solve this problem we pro-
pose learning a pool of simple online prediction algorithms
(predictors) with a partial view of the full contextual infor-
mation.  Specifically, for each triple of (user, advertiser,
publisher) features we create a prediction strategy (an "ex-
pert”) that examines only those features and makes predic-
tions based on their values. In our framework the experts
may choose to abstain from giving a prediction on a given
instance. As in [6, 11], we shall call these experts special-
ists, because they are allowed to abstain when the instance
doesn’t fall into their areas of expertise, or specialities.



In this paper we shall deal with a pool-based real-time
bid prediction. The learner is presented with a fixed pool of
specialists that learn according to a modified online learn-
ing protocol with batch updates. Learning proceeds in a
sequence of trials. On each trial the learner receives one in-
stance from a fixed domain and feeds this instance to the
specialists in the pool. The learner then selects one spe-
cialist from the pool and uses its estimate towards the bid
computation. If the bid wins in the external auction then
the learner pays a cost. After some time, the adversary pro-
vides the learner with the true labels and then the learner
induces an updated set of specialists based on the newly
received information.

We frame the problem of best specialist selection in the
multi-armed bandit framework and propose to use random-
ized probability matching. An important component of the
online learning framework is a loss function that associates
a non-negative loss to each pair of prediction and outcome.
In the multi-armed bandit framework, however, there is no
obvious loss function defined on an instance basis.

Contributions. Our contributions are threefold. First,
we describe how randomized probability matching can be
naturally applied to settings like real-time bid prediction for
online advertising. In particular, we describe a new version
of a Thompson Sampling algorithm customized to suit such
conditions *. Tt can be viewed as a meta-learning algorithm
that selects from a pool of experts. Our work is one of the
first in trying to use bandit type ideas for sampling from an
ensembles of experts in real-time bid prediction with bud-
get constraints, and we strongly believe that one can build
extremely practical, yet very simple and scalable algorithms
by understanding the interplay between multi-armed ban-
dits and learning from a pool of experts. Second, we show
that this approach is useful in practice, scales well, and is
easily deployed at large-scale in real world industrial systems
for real time ad allocation. Finally, we provide empirical
support and comparison with several state-of-the-art algo-
rithms using real world campaign data provided by Turn, a
leading Demand-Side Platform (DSP).

2. BRIEF SYSTEM OVERVIEW

A simplified illustration of the advertising ecosystem and
a typical ad call flow is given in Fig. 1. The figure illustrates
a user with a web browser, an ad server, an ad exchange,
a Data Management Platform (DMP) and a Demand Side
Platform (DSP).

The ad call flow starts from the user’s browser. The call
is initiated when a user with uid opens a webpage at URL
url. The user’s browser then contacts the ad exchange the
publisher is integrated with. The ad exchange appends uid
and url to a request submitted to several DSP partners.
Using the uid and url, DSPs return to their decision enginers
the information about the given user and the web page that
they can find in their stores. Each DSP runs an auction
among the eligible ads (normally those that satisfy certain
targeting constraints) from its list of existing campaigns.
Then, one or more ads, depending on the space and layout
characteristics, are chosen for display and ranked based on
some function of expected performance and advertiser’s bid.

e.g. minimizing effective CPC (eCPC) and maximizing ad-
vertiser ROI.
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Figure 1: Ad call flow between a web browser and a
demand side platform.

The bidding DSPs return back their proposed ad and bid
pair back to the ad exchange. Once the ad exchange collects
all the bids, it runs an auction (usually a second price auc-
tion) and determines the winning bid and the corresponding
ad. It then passes the winning ad and the location of its
creative back to the browser. The browser then collects the
creative and finally returns the page to the user [19].

This entire flow needs to happen within a small portion
of a second so that the user can see the page with ads as
soon as the page appears on her web browser. This latency
and throughput constraints put extreme time constraints on
each bidding DSP and their decision engines. Our proposed
approach is at the heart of the decision engine and works
under such time constraints with a satisfactory performance.

3. PROBLEM FORMULATION

For the sake of clarity, we will only talk about click events,
and focus on maximizing the CTR or minimizing the cost-
per-click (CPC). Our methodology is equally applicable to
other types of events such as conversion events, engagement
events, etc. Moreover, without loss of generality, we will
focus on the display channel. We provide a bottom-up for-
mulation of the problem that provides the skeleton of our
solution constructed on ideas such as: feature hierarchies,
randomized probability matching, and sleeping experts.

3.1 Feature space and predictors

In the online advertising context, the feature space is usu-
ally constructed along three main dimensions: wuser, pub-
lisher represented as webpages, advertisers represented as

ads. Time and other dimensions are extra. Let U = {u1, ua, ...

P = {p1,p2, .-, Pm}, and A = {a1,a2,...,an} represent all
the users, webpages and ads (with creatives) in a DSP, re-
spectively. The goal in bid prediction is then to find among
all eligible ads the ad that has the highest probability of
a click for a given user on a given webpage. One way to
model this is to represent users, webpages, and ads using
a set of explicit features and build a classification model.
However, due to the sparsity of user-level data, an alter-
native and better idea is to compute the number of times
an ad was displayed to ”similar” users on a given website
and observe how many of these impressions result in a click.
Then, the CTR for this user can simply be estimated as the
total number of clicks among all similar users divided by
the total number of impressions. This kind of user grouping
can either be achieved by explicit clustering based on some

aul}7



similarity metric or it can be implicitly done by using data
hierarchies [19].

For example, every ad in the DSP can be considered as be-
longing to an advertising campaign which in turn belongs to
an advertiser (e.g., Advertiser: ’Acme Cars’ — Campaign:
2011 Year End Sales” — Ad: ’Incredible Year End Sales
Event!”). Similarly, a website on which an ad will be dis-
played is under a top level domain (TLD) which is owned
by a publisher and the publisher itself might belong to some
category based on its main content (e.g., Publisher Type:
'News’ — Publisher: ’Acme City Times’ — Page: ’Auto
News’). If we assume that user, publisher, and advertiser
data have [y, Iy, l, levels in their respective data hierar-
chies, there are l,, x I, x I, possible ways of combining count
data for a given (user X publisher x advertiser) triple.

Using these various levels of count data aggregated along
the time dimension we can create simple context-dependent
predictors that are able to produce a maximum likelihood
estimate of the CTR. Experts that use higher-level data will
be susceptible to high bias in their estimates. On the other
hand, experts that use lower-level data will be susceptible
to high variance, due to a limited number of data points
from which the estimates are drawn. Naturally, by observing
more data points in the lower levels of the data hierarchies
the corresponding experts will become more accurate over
time. In the next section, we discuss how we can combine
these estimators to obtain a final prediction.

3.2 Meta-learning

Let let a%%jk, a%?jM ey igk, denote the full set of maximum
likelihood estimates of the CTR for user u;, webpage p; and
ad ag, at K different level combinations. For clarity, we will
drop the indexes and use ', £2, ..., ¥ instead. Recall that
each of these levels corresponds to a distinct combination of
the user, publisher and advertiser hierarchies and, as such,
it is not always clear which one will yield the best estimate
of the true CTR p;ji.

Most of the time user-publisher-advertiser data will be
missing, and the estimators using these information sources
simply will not be computed. For example, a user IDs
might not be found in the user profile servers, or the pub-
lisher’s webpage will not match any of the known categories
in the publisher taxonomy, or the advertiser has no past-
performance data in the system. Moreover, there may not
be sufficient number of click events in one of the hierarchi-
cal levels to calculate a reliable estimator output using the
past performance observations. As a result, the number of
available estimates will change over time, and in some cases
might be zero.

One way to aggregate these estimates is to use a learning
method that combines the available estimates into a single
prediction. For example, Lee et al. [19] have used logistic
regression to combine experts estimates for action rate pre-
diction. Further, there exist a number of online learning
algorithms designed for the scenario of missing experts from
a pool of learners, such as the online SBayes [11]. However,
due to the dynamic nature of the problem and the time-
varying performance of the experts, these approaches are
not most suitable. Rather than trying to combine multiple
predictions, in this work we try to pick the best estimator
among the K experts. The reasoning behind this decision
is two-fold: First, through an online evaluation we have ob-
served that under specific contextual decisions, the experts
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are able to provide very good estimates of the CTR without
merging; second, their performance varies significantly over
time. Hence, our problem can be formulated as an online
expert selection problem, where the set of available experts
changes over time.

3.3 Performance-based bid prediction

At an abstract level, advertisers place their bids in the
form of CPC or CPA goals. In pure second-price auctions
the dominant bidding strategy for the advertisers is to sub-
mit their private true value [10]. Therefore, the value of
the impression is typically calculated with the probability of
a click (predicted by DSPs) multiplied by the value of the
click (given by advertisers). The resulting bid for a given
impression at time ¢ would be calculated as:

Bid(t) = 6(t) x goal

where the goal is a fixed number w.r.t. the given campaign
that amounts to the monetary value the advertiser assignes
to a click, and 6(t) is the click probability. In practice, how-
ever, this is never the case. Besides the additional bid ad-
justments which are done post-CTR computation, the ad-
vertisers can further influence the bid price through multiple
scaling factors.

Therefore, when minimizing the eCPC, one needs to take
into account the expected cost for the expected number of
clicks. In other words, minimizing the eCPC is not equiva-
lent to the CTR maximization strategy. To illustrate this,
let’s assume that we need to minimize the eCPC, and the
total budget is $1000. Assume further that we have two dif-
ferent prediction strategies whose average estimates for the
CTR are: 12 x 1073 and 20 x 10~2 correspondingly. Due to
the difference in the expected values of these estimates and
the inherent sampling biases, the bid price would be differ-
ent though not linearly dependent, so let’s assume that the
average cost per impression is $0.05 and $0.12 correspond-
ingly. That means one could buy on average around 20,000
impressions in the first case and around 8,334 impressions in
the second case. This leads us to about 200 clicks with the
first strategy and 175 with the second, and correspondingly
$5 and $5.7 effective cost per click (eCPC). In this case, us-
ing the first strategy whose CTR estimate is lower can lead
us to a better eCPC.

4. MULTI-ARMED BANDITS

Choosing the best expert for bid prediction can be natu-
rally viewed from the perspective of exploration-exploitation
trade-off. The concept of exploration-exploitation is central
to problems in decision making under uncertainty, and is
best illustrated by the multi-armed bandit (MAB) problem.

In its simplest formulation (generally referred to as stochas-
tic), a bandit problem consists of a set of K probability
distributions < D, ..., Dk > with associated expected val-
ues < p1,..., hx >. Initially, the distributions are unknown
to the player. In fact, these distributions are generally in-
terpreted as corresponding to arms on a slot machine; the
learning algorithm is viewed as a gambler whose goal is to
collect as much money as possible by pulling these arms over
many turns. At each turn, ¢t = 1,2, ..., the player selects an
arm, with index a¢, and receives a reward y; ~ D;(t). The
goal of the algorithm is to find out which distribution has
the highest expected value, and also to gain as much reward
as possible during the course of the game.



The added complexity of using bandit algorithms in bid
prediction problems is two-fold: First, we assume that the
bandit algorithm has access to a set of experts Sy € 1, K
whose performance can change over time; second, for each
turn ¢ the bandit has to pay an unknown variable cost c;
associated with winning the auction. Hence, each trial of
the bid prediction problem is a trial between the algorithm
and an adversary in a game that consists of the following
steps:

1. The adversary choses a set S; C {1,..., K} of experts
that are available at iteration ¢.

. Each available expert i € S; provides an estimate &°.

. The algorithm chooses one expert s; from S; and uses
its estimate to compute a bid.

. The adversary chooses a cost ¢; for buying that im-
pression and a binary outcome y; € {0,1} (no click /
click).

5. The algorithm pays a cost c;.

Various strategies have been proposed that maximize the
expected reward, but very few consider the inherent cost for
playing an arm. As we showed, an algorithm that strives to
maximize the expected reward (CTR) can be sub-optimal in
minimizing the effective cost-per-click (eCPC). We propose
a solution based on randomized probability matching, better
known as Thompson Sampling [27] (TS). In the next section
we provide the details of our solution.

4.1 Randomized probability matching

Randomized probability matching plays each action ran-
domly in proportion to its probability of being optimal. This
approach is known as Thompson Sampling and has been
shown to be especially successful in systems whose limita-
tions allow only periodic (batch) updates. It is broadly ap-
plicable, easy to implement and can be extended to work
with a broad class of reward distributions.

We consider a general probabilistic, or Bayesian, formu-
lation in which uncertain quantities are modeled as random
variables. Let y, = (y1,...,¥+) denote the sequence of re-
wards observed up to time ¢, such that y; € {0,1},Vi =
1,...,t. We focus on binary rewards because clicks are bi-
nary events. Let a; denote the played arm at time ¢. The
success of each arm is modeled as an IID random variable,
Y1, Ya, ..., Yk living in a space Y = {0,1}*. Since each
random variable has a binary outcome, each arm is mod-
eled with a Bernoulli distribution with success probability
0,. It follows that each y, was generated independently from
the reward distribution fa,(y|@) of the played arm, where 6
is an unknown parameter vector that governs the success
probabilities of the Bernoulli distributions of the arms.

Let ¢: = (cy, ..., c+) denote the sequence of costs that the
algorithm has payed for each observed reward up to time ¢,
such that ¢; € R;Vi =1, ...,t . The cost of each arm is mod-
eled as an independent and identically distributed random
variable, C1, Ca, ..., Cx defined in a space C = R¥. Now,
the cost distribution of each arm is modeled with a Gaus-
sian distribution with parameters m, and o,. It follows
that each ¢; was generated independently from the cost dis-
tribution f,, (c/m, o) of the played arm, where m and o are
unknown parameter vectors.
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Let puq(0) = E(y:|0,a+ = a) denote the expected reward
coming from the reward distribution fa, (y|f). Let vo(m, o) =
E(ct|m,o,a: = a) denote the expected cost coming from
the cost distribution f,,(c|m, o). If our goal was to maxi-
mize the number of clicks without considering the price we
are paying for each impression, then the optimal long run
strategy would be to always choose the arm with the largest
1a(0). However, our goal is to minimize the ratio of the total
cost and the total number of clicks, i.e., the cost per click.
Therefore, we will denote with pq (8, m, o) the expected cost
per click coming from the reward distribution fq,(y|¢) and
the cost distribution fq,(c|m, o).

Let p(0) denote a prior probability on 6, and p(m, o) de-
note a prior probability on m and o. Assuming that we
have a method to compute pe = pa(6,m, o), according to
the principles of randomized probability matching one can
compute the initial allocation probabilities:

1
Eq. 1 can be expressed as an integral of an indicator func-
tion. Let I,(0,m,0) = 1 if pe(0,m,o) = min{u1 (6, m, o),
ey i (0,m,0)}, and I,(0, m, o) = 0 otherwise. Then

Wa,0 = P(pa = min{p1, o, ..., px }).

wa,0 = E(14(0,m,0)) = /Ia(ﬁ, m, o)p(0)p(m, o)dddmdo.
2)

Here we assume that the success variables and the cost vari-
ables are independent from each other. The prior distribu-
tions represent our beliefs or a-priori knowledge about the
success probability of each arm as well as the cost parame-
ters per arm. As rewards and costs from the bandit process
are observed, the parameters of the reward and cost distribu-
tions are updated through the process of Bayesian updating.
After observing the sequence of rewards y, and costs c; at
time t the posterior distribution of 0 is

p(O1y.) o< p(8) [T far (y-16) ®3)

while the posterior distribution of m and o is

p(m, U|Ct) X p(m7 U) H fat (CT|m7 U)‘

T=1

(4)

Hence, to compute the allocation probabilities in the next
iteration all we need is a component that will be able to es-
timate the expected reward p, and up-to-date beliefs repre-
sented with the posterior distributions p(fly,) and p(m, o|c;):

P(:ua :max{ﬂlvlu%“quHyhct) (5)

E(Ia(ga m, J)lytv Ct)'

Wa,t

Eq. 1 and Eq. 5 can be computed using the law of large
numbers by simulation. Let 61, ..., (%) be a sample of
independent draws from p(dly,), and (m™), 0), ..., (m'¥, o)
be a sample of independent draws from p(m,c|c:). By the
law of large numbers,

G
. 1
Wq,t = Glglloo G Zl [a(g(g)7 m(g)7 o).
P

(6)

Eq. 6 estimates the allocation probabilities wq,; by the em-

pirical proportion of Monte Carlo samples in which ua(6<g), m9, o)

is maximal. Choosing adequate conjugate prior distribu-
tions p(0) and p(m, o) makes sampling independent draws



of 0 and m possible. In our case we will be working with
a Beta distribution as a prior for the Bernoulli distribution
used to model the reward likelihood, and a Gaussian prior
for the Gaussian distribution used to model the cost likeli-
hood.

Estimating pq (0, m, o) is a separate problem which will
not be discussed here in full detail. The method simply esti-
mates the expected cost per click by the method of simula-
tion, using the posterior distributions p(6]y,) and p(m, o|ct).
Since posterior draws are all that is needed to compute the
allocation probabilities one can apply randomized probabil-
ity matching with almost any family of reward distributions.

4.2 Thompson Sampling with double priors

The pseudo-code of our proposed Thompson Sampling al-
gorithm is given in Algorithm 1. The algorithm starts from
its prior beliefs on the expected success rate and the ex-
pected cost, implemented with a Beta and a Gaussian prior
distribution, respectively. In each trial, the algorithm first
observes the set of available experts S; and their estimates
%] (line 3), and performs a Monte Carlo simulation to cal-
culate the allocation probabilities using Eq. 6 (line 4). The
simulation consists of drawing independent samples from
the posterior distributions of # and m. Then the algorithm
chooses to play an expert according to the allocation prob-
abilities w; (line 5), and uses its estimate of the CTR to
calculate the bid. If the bid wins the external auction, the
algorithm observes the outcome y; and the cost ¢: (line 8),
and updates the posterior distributions by updating their
parameters (lines 10-14).

Algorithm 1 Thompson Sampling with double priors

1: Initialize S(1) = 0, F(1) = 0, , T(1)=0, (1) =0

2: fort=1,2,..,T do

3: Observe S; and X7

4: For i € S; calculate the allocation probabilities w; ¢
using Beta(Sq(t) + 1, Fu(t) + 1) and N (m(t), o(t)?)

5: Choose one expert a at random according to w;

6 Use estimate &7 to submit a bid b,

7: if b; won the auction then

8: Observe the outcome y; and the cost ¢,

9: Update the posterior distributions of expert a:
10: Sa(t+1) = Sa(t) + ye
11: Fat+1)=F,(t)+1—1
2
12 m(t+1) = 2 —c+ —=—mo
“ tog ?1 0
13: o(t+1)° = (L + 5)
0
14: To(t4+1)=Ta(t)+ 1
15: end if
16: end for

Using Beta(a, 8) priors is useful for Bernoulli rewards be-
cause the Beta distribution is a conjugate prior distribution
for Bernoulli. This enables simple Bayesian updates through
updating the parameters a and 8. At time ¢ having observed
Sa(t) successes and Fj, (t) failures in T, (t) plays of arm a, the
posterior distribution is Beta(Sq(t)+ v¢, Fa(t) + 1 - ).

Similarly, the conjugate prior distribution for a Gaussian
likelihood distribution is Gaussian, which again enables sim-
ple updates through the parameters of the distribution. We
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choose to model the likelihood of the cost fo(c|m, o) with a
Gaussian distribution N'(m, 0?) ~ X exp (=55 >, (c; — m)?).
By choosing a conjugate prior distribution N (mo, o8)s:

( ) 1 1 ( )2
mo,00) X —exp | —=——=(m —m
p{mo, 00 ) p 28 0

where the prior mean my is typically chosen to be 0, and the
prior variance op is some large value, the resulting posterior
distribution p(m|c;) is obtained by simply multiplying the
likelihood fo(c|m, o) and the prior p(mog, 0o):

2 2
1 t 1!
N 200 QC+ 20 Qmo,(ﬁ+*2) (7)
7=+ o} 7=+ o 9% 0
Both of the distributions can be updated using batch up-
dates of their parameters.

S. NON-STATIONARY SYSTEMS

In a variety of practical applications as well as in our sys-
tem the time evolution of the system, and in particular of
the reward distributions, is gradual. Actually, if the rela-
tionship between the input features and the target variable
is stationary then we can confidently predict that the reward
distributions for each cold-started arm will be evolving in a
similar way. As the estimates of the experts improve over
time we should expect that there will a gradual increase in
the running CTRs and a shift towards convergence. All of
the experts will be characterized with an initial period of
high instability and uncertainty. An example of how one
should expect the evolution of the CTR would look like is
given in Fig. 2.

Evolution of the CTR

Figure 2: Evolution of the click-through-rate (CTR)
for one specialists w.r.t. a given campaign.

Hence, for dynamic multi-armed bandit problems one should
prefer policies that take into account the fact that the reward
distributions change in a gradual manner, starting from a
point of high instability and uncertainty and moving slowly
towards a more stable phase. While Thompson Sampling
naturally handles this evolution, it can be easily adapted to
track potential changes.

5.1 Time-varying reward distributions

As discussed previously the problem we are solving falls
in the family of multi-armed bandit problems with non-
stationary reward distributions, where the optimal arm changes
over time. We have discovered two sources of change in the
reward distributions of the experts (arms):

1. Due to the slow increase in the accuracy and predic-
tion power of a cold-started expert i, we expect an



initial period of instability where rewards arrive in an
adversarial manner, followed by a gradual increase in
the probability of successes S; obtained in T; number
of Bernoulli trials and a saturation phase.

. Due to the dynamic nature of the bidding process and
the possibility of a change in the bidding landscape or
the setup of the campaign, experts that performed well
in the past might start to underperform compared to
others w.r.t. a given campaign.

To be able to track changes in the probability of success
of each expert, we adopt an approach based on exponential
smoothing proposed by Gupta et al. [14]. This is a filtering
technique that can be easily and efficiently implemented in a
large-scale system like ours. The gist of exponential smooth-
ing is exponential weighting of the outcomes in each trial,
such that older outcomes get smaller weights and hence con-
tribute less to the current estimate of the success probability
0;. This is a typical forgetting mechanism used in many on-
line learning algorithms designed for dynamic environments,
and has been used for computing prequential (predictive-
sequential) error estimates as well, where the sum of losses
L4(t) at time ¢ is computed as:

La(t) =aLla(t—1) 4 La(Je,ye)

where a € [0, 1] is a fading factor that determines the speed
with which past errors will be diminished.

As discussed previously the posterior of the reward distri-
bution at time ¢ of expert a is modeled with a Beta(Sq (t)+y:,
Fo(t) + 1 — y) distribution, where S;(t) and F;(¢) denote
the successes and the failures up to time ¢. Exponential
smoothing is simply implemented through a new set of up-
date rules on the parameters of the Beta distributions S;
and F;, Vi = 1,..., K and a threshold parameter C which
determines the upper bound on the variance of the Beta
distribution:

LI Sa(t—1) + Fa(t— 1) < C
Sa(t) = Salt — 1) +
Py = ot — 1) 11— (8)
2. I Su(t—1)+ Fu(t—1) > C
Sﬂ(t) = (Sa( 1) + yt)C-&-l (9)
Fu(t) = (Fat— 1) + 1 — ) 2

The effect of these update rules are that: 1) they ensure
that the sum of S, (t) and F,(t) never grows above C; 2):

pa(t) = ﬁ% =apa(t—1)+ (1 —-a)y  (10)
where a = C+1’ and 3):
5 1
0<o,(t) < WO+ (11)

The direct effect of bounding the variance of the Beta dis-
tribution through the parameter C' is to enabling indefinite
exploration and through that, detection of relative changes
in the expected values of the reward distributions of the ex-
perts. Due to the scale of our system and the large number
of campaigns with different pacing parameters, the value of
the parameter in practice needs to be set individually.
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Exponential smoothing, however, is not sufficient to cap-
ture the dynamics of the reward distributions that are spe-
cific to cold-started experts. For that purpose, our online
learning samplers operate on sliding windows. Using a slid-
ing window enables us to discard the counts of successes and
failures from the early stages of the specialized learners and
maintain estimates using the most recent data.

5.2 Extensions: Factoring in Context

In the traditional, non-contextual multi-armed bandit prob-
lem, the learner has no access to arm features and simply
competes with pulling the best of K arms in hindsight. As
opposed to the traditional K-armed bandit problems, fea-
tures of the arms may be useful to infer the conditional av-
erage payoff of an arm and improve the total average payoff
over time. Our idea is to use real-time performance features
of each expert, and time decaying functions that model the
uncertainty in their performance in the early stages of their
learning process as contextual information.

We use a predefined set of performance features and the
time span w.r.t. the number of times the specialist was
given a chance to learn: 1) the empirical estimate of the
success probability f1(t) = Sa(t)/Ta(t), the runmng average
of the specialist’s predictions f2(t) = Tal(t> ZT Lar—a Ya,rs
the running variance of the specialist’s predictions f3(t)
70 vt ar—a(Ja,r — Ga,r)?, the submitted bid fa(t) = by,
and the time-decaying function f5(t) = L

/Ta(t)+1"

The most notable example of bandits with side infor-
mation are contextual bandits with linear payoff functions,
which is a well studied problem in statistics and machine
learning. Agrawal and Goyal have designed the first ex-
tension of Thompson Sampling for the case of the stochastic
contextual multi-armed bandit problem, using Gaussian pri-
ors and Gaussian likelihood model [3]. We have adopted the
same design of a contextual Thompson Sampling algorithm
without any changes and used it for CTR estimation.

6. PRACTICAL ISSUES

The practical deployment of the Thompson Sampling al-
gorithm involves the design and implementation of an of-
fline and an online component. The offline component is de-
signed to collect performance data which is being stored and
accessed periodically, using Apache Hadoop and Pig. The
online component, on the other hand, is executed by the ad
servers in real time, and involves the process of sampling
from the posterior distribution and calculating the alloca-
tion probabilities.

To ingest the data from the outside world, our data pro-
cessing pipeline defines a process of transformation, join, and
compression stages. Raw web logs need to be first synced
to a designated location on the Hadoop file system, where
they would be picked up by the modules for click attribu-
tion. This stage is followed by click de-duplication and fraud
detection, and at last the aggregated data becomes accessi-
ble for querying. Because of this complicated pipeline, up-
dates to the learners are periodical and can only happen
in batches. It becomes clear that algorithms that cannot
operate with batch updates cannot be implemented in our
platform.

Further, having different campaigns with different bud-
gets, bidding pace, bidding tactics, goals and targeting cri-
teria, the expert selection problem needs to be carried out
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Figure 3: Illustration of the learning flow on HDFS.

at a more granular level. Therefore the data collection and
model generation is done on a campaign level. For each cam-
paign and for each expert that has been played, the data
collection flow consists of a cyclic repetition of the following
stages: collection and aggregation, exponential smoothing,
generation of new hyper-parameters, as shown in Figure 3.
The resulting model is in essence a key-value map, where the
key is a combination of a campaign id and expert id, and
value is a list of multiple summary statistics and distribution
parameters.

After the new model is generated, it is synced to the 1000s
of ad servers on the distributed platform, and its execution
proceeds without real-time updates. It is worth mention-
ing that sampling from a Beta and a Gaussian distribution
can be time consuming especially when the whole bid pre-
diction process has to be done within few milliseconds. In
order to speed up the sampling, we have used a fast im-
plementation of the Mersenne-Twister algorithm [23] as a
replacement of the random sampling function available in
Java, as well as an implementation of the Ziggurat algorithm
for generating random numbers from a Gaussian distribu-
tion [22]. Although using these improved samplers within
the algorithms for sampling from a Beta and Gaussian dis-
tribution improved the sampling time significantly, due to
the extremely sensitive time restrictions for some cases we
also used precomputed samples and estimates.

7. RELATED WORK

The exploration / exploitation dilemma is an old problem
and has received a significant amount of attention from the
statistics and machine learning communities. The Multi-
armed bandit problem has close connections to the Boost-
ing method in classification [29], and to sparse recovery and
compressed sensing [28]. Various strategies have been pro-
posed throughout the decades, probability matching, greedy,
hybrid strategies, methods based on indices such as the
upper confidence bounds (UCB) and Gittins indices [12].
Among the oldest heuristics are the randomized probability
matching or posterior sampling strategies. The first version
of this Bayesian heuristic is around 80 years old, dating back
to Thompson [27].
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Thompson Sampling (TS) has only recently been estab-
lished as a top performer for MABs with Bernoulli dis-
tributed rewards, and the reason for this delay has been
the lack of theoretical understanding. Several studies [13,
26, 8, 24, 15] have empirically demonstrated the efficacy of
TS. Weak guarantees have been provided by [13, 24] with
a bound of o(T) on the expected regret in time 7. Some
significant progress has recently been made by [1, 15, 2],
who provided optimal regret bounds on the expected regret;
Agrawal and Goyal provided high probability, near-optimal
regret bounds for stochastic contextual bandits with linear
payoffs [3].

It is useful to mention that one could imagine trying to
solve the best specialist selection problem using EXP3- or
EXP4-type approaches [5]. In EXP4-type approaches the
player’s goal is to combine the advice of the experts in such
a way that its return is close to that of the best expert.
EXP4 stands for "Exponential-weight algorithm for Explo-
ration and Exploitation using Expert advice”, hence, it is
an algorithm that learns how to mix the probability distri-
butions coming from N experts in order to generate a final
mixture distribution over the set of arms of size K. It can be
used in a simplified scenario, where each expert corresponds
to a deterministic policy that maps a context to only one
arm with probability 1.0, and with probability 0.0 to the
rest of the arms. EXP3 is in essence a special case of EXP4
for this simplified scenario.

While in the expert-learning framework, each expert cor-
responds to a contextual policy for arm selection, in our
setup experts are not a mapping from a context to an arm,
but they are specialized arms whose outputs are the con-
ditional probabilities f;(y:|¢). EXP3- and EXP4-type ap-
proaches cannot be easily modified towards more complex
reward distributions or optimization goals. Therefore, none
of these approaches provide any advantage over Thompson
Sampling. Posterior sampling can be applied to a much
broader class of problems, and one of its greatest strengths
is its ability to incorporate prior knowledge in a flexible and
coherent way.

Recently Li [20], motivated by the connection between
Thompson Sampling and exponentiated updates, has de-
signed a new family of algorithms called Generalized Thomp-
son Sampling in the expert-learning framework [7]. General-
ized Thompson Sampling (GTS) is very similar in structure
to EXP4, with the difference of a more general update rule
that uses a loss function to adjust the expert’s weights. Each
expert represents a greedy policy with respect to the prob-
ability of success (reward prediction) that maps a context
to an arm. As in all existing analysis for Thompson Sam-
pling, the assumption is that one of the experts correctly
predicts the expected reward (probability of success). The
generalization involves two loss functions: Logarithmic loss
and square loss, for which regret bounds are derived. The
author shows that Thompson Sampling is a special case of
GTS when the logarithmic loss is used 2.

Due to the complexity of the performance-based bid pre-
diction problem, very few algorithms are designed to maxi-
mize the expected reward (CTR) having into account budget
limitations or costs for playing the arms. To the best of our

2The loss function is used to measure how well the expert
predicts the average reward, given the context and the se-
lected arm. In general, the loss function and the reward may
be completely unrelated.



knowledge, there is only one work that treats the bandit
problem with budget constraint and variable costs [9]. The
authors propose UCBBV2 an UCB-type algorithm whose
expected regret depends on the budget which constrains the
total number of pulls. While this algorithm does take into
account the variable costs per arms, it is not designed to
work with batch updates and as such it is not appropriate
for our platform.

8. EVALUATION METHODOLOGY

Our proposed framework of bid prediction has been im-
plemented, tested, and deployed at Turn, a leading DSP.
In this section, we present experimental results from our
testing environment where we compared different strategies
for expert selection. In addition, we also show results from
real campaigns that serve large amounts of daily impres-
sions in order to demonstrate the overall performance im-
provement in terms of CTR, eCPC, and ROI performance
metrics. Advertiser’s return of investment (ROI) is the to-
tal value (#click x value) divided by the total cost incurred

8.1 Experiments

The first part of our experimental evaluation consists of
an offline policy evaluation of the proposed Thompson Sam-
pling algorithm and its extension, the Contextual Thompson
Sampling algorithm with a number of state-of-the-art multi-
armed bandit strategies. The offline evaluation is performed
on a large collection of over 300 million ad impressions, col-
lected by Turn’s processing pipeline in a period of 30 days.
The impressions belong to 7 top spending advertisers that
are running several campaigns on the platform. The second
part of our experimental evaluation is an online comparison
of Thompson Sampling on production data to our existing
baseline algorithm through fair A/B testing. The baseline
algorithm is a static, rule-based model that chooses the best
expert in a deterministic manner.

First, we would like to emphasize the volatility of the CTR
in few top performing estimators through the daily evolution
of the CTR shown on Fig. 4. This CTR is computed by
ordering our historic impressions based on the time stamp
the impression was shown to a user and aggregated by day.
We can see that the daily CTR varies significantly, which
has strongly discouraged us from running experiments on
simulated data.

Time

Figure 4: Illustration of the evolution of the CTR
per day for the top performing experts.
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In the comparison we have used the following state-of-
the-art MAB algorithms: Chernoff UCB is an index based
UCB-style algorithm with a tight upper confidence bound
derived from the Chernoff bound ([16], page 278), EXP3 and
EXP3.S [5] are bandit algorithms with experts advice, UCB1
and Tuned UCBLI [4], UCBBV2 [9]. For a fair comparison we
ran all of the algorithms without using any explicit change
detection or blind concept drift management. All of the
algorithms were further tuned for best performance.

As a DSP, we do not have the luxury of executing arbi-
trary policies on real traffic, and the only viable alternative
is to do offline policy evaluation. Offline policy evaluation
is the process of evaluating a new strategy for behavior, or
policy, using only observations collected during the execu-
tion of another policy. The difficulty of this problem stems
from the lack of control over available data. In our case we
are bounded to use the existing logged impressions and the
corresponding choices of the baseline algorithm, which is our
exploration policy.

Exploration Scavenging (also known as offline replay [17])
is a popular method for offline evaluation of new MAB poli-
cies m;, by using the logged decisions of an existing baseline
policy s. This method suggests to calculate an expected
reward of a new policy s using the following equation:

T
Rm) = 3 raeo s = w(@)] 3 Us(er) = alwaa,
t=1 acA

(12)
where T denotes the total number of historic logs used in the
replay, A is the set of all possible actions (arms), z; is the
context for impression at time ¢, 1 is the indicator function,
and w4 is a normalization weight calculated from the whole

set of impressions with contextual information = as

B S0y 1w = a] x Un(ae) = d |
ZZ:II 1[zy = z] X L[n(zy) = a] X Ln(zy) = s(zyp]

Wg,a

Exploration scavenging first estimates the average reward
of each action from the set of impression on which both the
evaluation 7 and the exploration s policies agree on choos-
ing the same action a, then applies the estimate to all the
impressions for which the evaluation policy 7 suggests the
action a. Fig. 5 shows the total scavenged CTR for each
algorithm computed at the end of the run.
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Figure 5: Total scavenged CTR per algorithm.

Beside exploration scavenging we also show results com-
puted using only the impressions on which the evaluation



policy agreed with the exploration policy, without apply-
ing precomputed estimates of the average reward. We will
refer to this approach as the matched CTR. Unlike the ex-
ploration scavenging estimates this approach will provide
rather optimistic estimates of the CTR. These estimates are
highly dependent on the number of matched impressions be-
tween the evaluation and the exploration policy. From all
algorithms, TS and Contextual TS had the largest overlap
with the baseline policy, with Contextual TS having twice
as much more matched decisions than TS. Fig. 6 shows a
comparison of the total matched CTR for all algorithms at
the end of the run.

CTR

Q¥
&

Figure 6: Total matched CTR per algorithm.

At last, Fig. 7 shows relative results in terms of the to-
tal ROI at the end of the run, which is our main metric
of interest. The top leading algorithms are evidently TS
and Contextual TS, with UCBBV2 and the baseline being
third. As discussed previously, to work properly, UCB-type
of algorithms require updates of the arm’s upper confidence
bounds instantaneously due to the deterministic indexes. In
practice, this is rarely doable. On the other hand, Thomp-
son sampling relies purely on random distribution sampling,
and can maintain a reasonable balance between exploration
and exploitation in each round while using a batch-updates.

Figure 7: Total ROI per algorithm.

Due to the dynamic behavior of the expert’s performance
it is important to understand how the performance of each
of the top algorithms evolves over time. Due to space limi-
tations we will only show the evolutions of the CTR and the
ROI for the Thompson Sampling algorithm and our baseline
model evaluated on production traffic over the timeline of
one day. Figure 8 and Figure 9 show summaries of the cumu-
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Figure 8: Evolution of CTR on production traffic.

—o—Baseline

—&-TS

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18

Figure 9: Evolution of ROI on production traffic.

lative CTR and ROI on a global level as time proceeds. We
can see that Thompson Sampling performs better than the
baseline model both in terms of CTR and in terms of global
ROI. Similarly, Figure 10 compares the cumulative eCPC of
the two models as a function of time. As the plot indicates,
TS is able to provide a lower overall eCPC compared to the
baseline model.

A
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—o—Baseline

—8-TS

10 15 20 25

Figure 10: Evolution of eCPC on production traffic.

9. CONCLUSIONS

Multi-armed bandits have an important role to play in
modern production systems that emphasize “continuous im-
provement”, where products remain in a perpetual state of



feature testing even after they have been launched. In this
paper we advocate using randomized probability matching
as a superior algorithm, and the industry standard, due to
its performance both in terms of accuracy, as well as speed,
broad applicability and ease-of-use. Thompson Sampling of-
fers superior real-time bid prediction compared to the base-
line algorithm in just a few milliseconds.
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